

ZIMBABWE

MINISTRY OF PRIMARY AND SECONDARY EDUCATION

CURRICULUM DEVELOPMENT AND TECHNICAL SERVICES

PHYSICS

SECONDARY SCHOOL LEVEL FORM 3 - 6 2015-2022

TEACHER'S GUIDE

Curriculum Development Unit P.O.BOX MP133 Mount Pleasant Harare © All Rights Reserved Copyright 2015

Acknowledgement

The ministry of primary and secondary education would to acknowledge the following:

- Physics National Panel
- United Nations Children's Fund (UNICEF)

CONTENTSPAGE
Acknowledgements2
Organisation of the guide4
Critical Documents5
UNIT 1: Curriculum framework for Zimbabwe Primary and Secondary Education6
UNIT 2: Syllabus Interpretation7
UNIT 3: Scheme of work9
UNIT 4: Lesson Plans11
UNIT 5: Record Keeping13
PART B: Curriculum Delivery14
UNIT 6: Scope of the guide17
Anneyure 19

1.0 ORGANISATION OF THE TEACHERS' GUIDE

This is a document intended for you, to realise the expected conduct towards the fulfillment of the new curriculum demands in Physics learning area. It guides you to understand and engage in the participation to implement the new curriculum.

This teachers' guide is divided into two parts.

Part A focuses on the critical documents you must have as a teacher. Part B deals with curriculum delivery which has the content, objectives, methodology, instructional materials, class management and assessment.

- Part A- Critical Documents
- Part B-Curriculum Delivery

PART A

2.0 CRITICAL DOCUMENTS

Introduction

As a teacher it is important for you to have the critical documents for effective curriculum implementation in the Physics learning area.

Rationale

Modern day economies, Zimbabwe included, are driven by Technology and Physics concepts form part of the basis. The study of Physics enables learners to be creative and innovative in industry and society that can promote the application of Physics in industrial processes for value addition. The learning of Physics concepts promotes value addition and beneficiation of natural resources and the harnessing of available opportunities for enterprise skills.

Objectives

By the end of part A on critical documents you should be able to

- a) Identify the critical documents
- b) Show understanding of each document
- c) Interpret the National Syllabus
- d) Develop the school syllabus
- e) Develop preparatory documents
- f) Develop progress records

You are expected to have the following critical documents

- Curriculum Framework
- National Syllabus
- School syllabus
- Scheme cum plan or Schemes of Work and lesson plans
- Progress Records
- Register of Attendance
- Learner profiling guide

Curriculum for Primary and Secondary Education

Introduction

This is a policy document that outlines the underpinning national philosophy, principles, learning areas, the description and expectations of Ministry of Primary and Secondary Education (MoPSE) at policy level. It outlines what the government expects you to implement.

Objectives

By the end of this unit you should be able to:

- identify key elements of the new curriculum
- demonstrate understanding of the values that define the new curriculum

Key Elements of the Curriculum

The following are the key elements of the curriculum framework

- Background
- Principles and values guiding the curriculum
- Goals of the Curriculum
- Learning areas
- Teaching and learning methods
- Assessment and learning
- Strategies for effective curriculum implementation
- The future

Unit 2:

Syllabus Interpretation

Introduction

A syllabus is a key document to you as a teacher and as such your ability to deliver effective lessons depends on careful planning. Planning begins with national syllabus interpretation which forms the basis for:

- Development of school syllabus
- Development of scheme of work
- Development of lesson plan

Objectives

By the end of this unit on syllabus interpretation you should be able to:

- Interpret the national syllabus
- Create the school syllabus

TYPES OF SYLLABI

There are two types of syllabi, that is, the National Syllabus and the SchoolSyllabus. The national syllabus is distributed by the ministry whilst the school syllabus is constructed at departmental level in your physics learning area.

2.1 National Syllabus

Definition

It is a policy document that outlines and specifies the Learning area philosophy, aims and objectives, Learning/teaching concepts and content, suggested methodology and assessment criteria at every secondary level. As a teacher, you should always have it to guide you in your day to day teaching and learning activities.

Elements of the Physics National Syllabus

The national syllabus includes the following topics:

- Cover page
- Acknowledgements
- Preamble
- Presentation of Syllabus
- Aims
- Syllabus Objectives
- Methodology and Time Allocation
- Topics

- Scope and Sequence
- Competency Matrix
- Assessment
- Glossary/Appendices

Content

The content of the national syllabus are in the respective documents:

Refer to Physics Syllabus Form 3-4 and Form 5-6

School Syllabus

Definition

It is the interpretation of the national syllabus taking into account local school factors. The Physics school syllabus must be drawn at school level from the National Syllabus by reorganising content taking into account local factors. (see section on Syllabus Interpretation)

Factors Influencing Drafting of the School Syllabus

The school syllabus is drafted taking into consideration different factors;

- Level of learner performance (knowledge they already have)- make use of progress reports and evaluation reports
- Relevant facilities and resources (in physics one may consider expensive practicals being done in January capitalizing on using left over materials from previous external examination)
- Time allocation in the official syllabus
- Local conditions that affect the choice and sequencing of topics
- Education technology
- Community influences

Elements of the School Syllabus

The following are the key elements of the school syllabus:

- Topic/content
- Activities
- Time allocation
- Methodology (NB learner centred)
- Instructional or teaching materials

SCHEMES OF WORK

Definition

Scheme of work is a result of your interpretation of the syllabus which shows the content to be covered and its sequencing. This is a document that you as a teacher should draw from the national and school syllabus.

You should outline the objectives, activities, content and methodologies (see schemes of work/ scheme cum plan template on page ...). You should draw your scheme of work/scheme cum plans at least two weeks ahead of lesson delivery date. (Use of ICT tools in drawing the documents is encouraged, avoiding the temptation to copy ready-made documents, but ensuring to make a document that suitsyour learners).

Components of Schemes of Work

- Week ending
- Topic/Content
- Objectives
- Competencies
- Source
- Methods
- Activities
- Evaluation

EXAMPLE

Aims

This scheme aims at

- 1. Introducing students to physical quantities
- 2. Relating physical quantities to measuring units
- 3. The use of measurement in the community

WEEK	ac- is- 13-12- rk, 2016 an- s
METHODS/AC- TIVITIES	Demonstration, Command, Practice, Guided Discovery, Group Work, Pair work, Tasking Collecting materials Measuring the dimensions of the materials Computer simulations on projectiles Computer simulations on projectiles Computer simulations on matural and manmade materials
FACILITY /EQUIPMENT	 Measuring tape Ticker tape Stopwatch Ammeter voltmeter
SOM/MEDIA	National Syllabus page School syllabus page The web for example. http:youtube.com materials
COMPETEN- CIES/ SKILLS/ KNOWLEDGE	-scientific /atti- tudes -decision mak- ing -accurate ob- servation lous -consistency -objective
OBJECTIVES By the end of the lesson pupils should be able to	- measure accurately - record results - apply the results wherever appropriate
TOPIC/ CON- TENT	Measurement- Measurement of physical quantities. • Derived quantities quantities units
WEEK ENDING (2016)	13-12

LESSON PLAN

Definition

This is a detailed daily plan of what you intend to deliver and how it will be done. This is to be used in the event of you having drawn a scheme of work rather than a scheme cum plan. (See Detailed Lesson Plan Template on page.....)

Components of a Lesson Plan

The lesson plan consist of the following components:

- Date and time
- Learning area
- Topic
- Class
- Sources of materials and/or media
- Textbooks
- Assumed knowledge
- Objectives
- Competencies
- Introduction
- Lesson development
- Conclusion
- Evaluation

EXAMPLE

Date: 22 April 2016

Level: Form 3

Time: 10:40-11:50

Number of students: 70

Learning Area Physics

Topic/Content: Physical quantities

Sub-Topic: Measurement

S.O.M: National syllabus 8.3.1 page 12

School syllabus

Textbook page

Media Various measuring instruments

Equipment: Objects and apparatus

Assumed Knowledge: learners are able to identify dimensions or physical quantities of objects.

Lesson Objectives

By the end of the lesson, learners should be able to:

- Measure physical quantities that is length and mass
- Read an instrument scale to the nearest fraction of a division
- Identify S.I. units for length and mass

STAGE/TIME	TEACHER	LEARNER	POINTS TO NOTE	
	ACTIVITIES	ACTIVITIES		
Introduction	Monitors activities in	In pairs they estimate	Units of length and	
5minutes	groups	length and mass of given blocks.	mass	
15 minutes	Facilitates presenta- tions	Each pair presents on estimations and a rival pair measures the estimated blocks.	accuracy	
10 minutes	Facilitates discussion	Compare estimates versus accurate measurements	Note sources of errors in measuring.	
5 minutes	Monitors order and attentiveness	Watch a video on how to take measurements	Measuring to the nearest fraction	
Skill Development	Rotates materials to be] 3	Use of measuring in-	
30 minutes measured		using different instru- ments and recording results	struments	
Conclusion	Corrects and concre-	Selected pupils sum-	How to measure	
5 minutes	tise main points	marise the lesson	• Units	
			accuracy	

Unit 5

RECORD - KEEPING

Definition

Records are critical documents about teaching-learning process which you must keep as a teacher. They should be accurate and up to date. The following are some of the reasons why you should keep records:

- They help you to track learner's performance
- They help you in planning and re-adjustment of plans
- They are essential for assessment
- They are the basis for counseling

In addition to critical documents you are expected to keep the following records in your file:

- Class attendance register
- Teacher's Guide
- Social record
- Progress record
- Remedial record
- Asset and stock control registers
- Circulars

Conclusion

All these documents are important for your delivery of the new curriculum.

3.0 PART B

Curriculum Delivery

Introduction

This section covers content, objectives, methodology, learning-teaching materials, evaluation and assessment, and class management.

- 3.1 Objectives (examples from forms 3 and 4 topics)
- 3.2 Content
- 3.3 Methodology (examples)

The following approaches and methods are recommended in the teaching and learning of Physics.

Approaches

You are the facilitator and the learner is the doer. Minimize methods that makes a learner a passive participant. Use learner-centered and interactive approaches, which include discovery, inquiry and problem-solving.

These approaches foster scientific skills such as observation, accuracy, objectivity, honest and group skillsThey include demonstrations, field work, games, simulations, debates, laboratory work and experiments, group work and discussions, role-play, case studies, project based learning and educational tours.

Objectives

Syllabus and learning objectives should be SMART. They are more specific statements that include both an action verb and a content reference. They should provide a clear statement of intended learning outcomes. In the formulation of objectives keep in mind the following questions:

- What do you want your learners to learn? (What are the learning outcomes which you expect from the learning and teaching process?)
- What assignments, classroom activities, and pedagogical approaches will help your learner acquire the identified knowledge, skills, or attitude changes (competences)?
- How will you determine that learners have accomplished what you set out to teach them?
 (How will you evaluate their achievements?)

3.4 Teaching-learning Materials

Teaching-learning materials are the tools you should use during the learning and teaching process. Learning materials should concretise the concepts and engage the learner. The following should help you choose appropriate teaching-learning material.

- capture learners' interest and create virtual reality.
- promote meaningful communication, hence effective learning.
- ensure better retention, thus making learning more permanent.
- provide direct or first-hand experience with the realities of the social and physical environment.
- help overcome the limitations of the classroom
- stimulate and motivate students to learn.
- help develop interests in other areas of learning.
- encourage active participation, especially if learners are allowed to manipulate materials used.

Types of Teaching-Learning Materials

Visual materials

Three Dimensional Materials

- Objects: real things-e.g. Jars, cooking utensils etc.
- Models: are recognisable representation of a real thing
- **Specimens:** are objects which are representative of a group or a class of similar objects e.g. flowers, fish, frogs etc.
- Printed materials: Textbooks, Workbooks, Handbooks and Modules
- Chalkboards
- Flannel or felt boards
- Bulletin boards
- Still pictures: Non-projected (photographs, illustrations) and Projected (slides, filmstrips, overhead projectors)
- Graphics: Charts, Graphs, Maps and globs, Posters and diagrams.
- Audio Aids: Radio and Recorded audio

Audio-Visual Teaching-learning Materials

Motion pictures such as Television and video clips

3.4 Assessment and Evaluation

Assessment

Assessment is both continuous and summative (see the physics syllabus)

Evaluation

You are supposed to evaluate at the end of each lesson and in the case of the scheme at the end of the week. When you evaluate you are looking at the extent to which the objectives have been achieved and this is usually measured by learners' performance. You should also evaluate the teaching —learning methods, this encompasses the strength and weaknesses of the methods used. You should evaluate the suitability of the equipment used. It is also important to evaluate the timing of activities and class management. You should also bring out the way forward in terms of areas of improvement and areas you can capitalise on.

3.6 Class Management

This is the process of planning, organizing, leading and controlling class activities to facilitate effective and efficient learning. This should help you to create an effective learning environment, motivate the learners, maintain class discipline and supervise class activities. Classroom organisation is critical for an effective learning environment. Classroom management covers: physical environment, emotional environment, grouping the learners, class control and discipline and supervision.

SCOPE OF THE GUIDE

Topics to be covered

- 1.0 Measurement and physical quantities
- 2.0 Kinematics
- 3.0 Forces
- 4.0 Machines
- 5.0 Mechanical structures
- 6.0 Work, energy and power
- 7.0 Thermal physics
- 8.0 Internal combustion engines
- 9.0 Waves
- 10.0 Optics
- 11.0 Electricity
- 12.0 Magnetism
- 13.0 Electromagnetism
- 14.0 Electronics
- 15.0 Atomic and nuclear physics

Topic/: 1.0 Measurement and physical quantity

- a. Measurement and base quantities
- b. Measurement and derived quantities
- c. SI Units

Sub topic: Measurement and base quantities

Objectives

By the end of the lesson pupils should be able to;

- measure length and mass
- read an instrument scale to the nearest fraction of a division

Content

Measuring length using meter rule vernier calipers and micrometre screw gauge

Methods and Activities

The learners measure the length using meterrule ,vernier calipers and micrometre screw gauge The learners measure mass using triple beam balances and electronic balances Learners to tabulate results

Materials

Meter rule
Vernier calipers
Micrometre screw gauge
Electronic balance
Triple beam balance

Evaluation

To what extent have the objectives been achieved?

How effective were the teaching – learning activities

How effective was your class management in terms of time management, order and clarity of instructions

How the learners responded

Conclusion

This guide is not exhaustive, your initiative and creativity is of paramount importance in the successful implementation of the new curriculum . You need to embrace the new paradigm which puts the learner at the centre of all class activities and encourages learning that is relevant to the learner's environment and the outcome should move Zimbabwe to a higher level in terms of socio-economic status.

The learning of Physics should be done with the following cross cutting issues in mind: inclusivity, environmental issues, indigenous knowledge system, financial literacy, enterprise education, gender, HIV and life skills, child protection, team work, food security, safety health issues and disaster risk management

Annexture scope and sequence

TOPIC	FORM 3	FORM 4
1.0 MEASUREMENT AND PHYSICAL QUANTITIES	Measurement of physical quantities.	Definition of voltage, resistance and current
	 Derived quantities 	Experiments to measure
1.1 Measurements	Use of S.I. units	voltage, current and determine resistance for ohmic conductors
1.2 Scalars and vectors	Definitions and examples	
	 Resultant of coplanar vectors using graphical method 	
	Applications	
2.0 KINEMATICS	 Definitions of terms 	
2.1 Speed, velocity, distance, displacement and acceleration	 Equations of linear motion and application 	
2.2 Graphs of motion	 Drawing and interpretation of graphs 	
2.3 Motion under gravity	Definition of free fall	
	 Calculations and applications 	
3.0 FORCES	Types of forces	Application of forces
3.1 Effect of force on materials	 Interpretation of force extension-graphs 	on beams, trusses and mechanical large structures
3.2 Effect of force on motion	Definitions of weight, momentum and inertia	
	 State and apply Newton's laws of motion 	
	Circular motion	
3.3 . Friction and circular motion	Effects of friction	
	 Methods of friction 	
	 Centripetal acceleration and force 	
3.4 Turning effects of a force	 Moments of a force 	
	Turning effect of a force	
	Principles of moments	
	Application of moments	
3.5 Centre of mass/centre of	Definitions of terms	
gravity	Determination of centre of mas	
	 Stability 	

TOPIC	FORM 3	FORM 4
3.6 Pressure	Definition	
	Calculations	
	Pressure in fluids and applications	
4.0 Machine	Definition	
	Experiments involving inclined planes, levers and pulleys	
4.1 . Simple machines	Definitions	
	Experiments involving:	
	-inclined plane	
	-levers	
	-pulleys	
	-calculation of velocity ratio. Mechanical advantage and efficiency.	
5.0. MECHANICAL STRUCTURES		
5.1 Mechanical structures	Beams, trusses, joining materials and large structures	
6.0 WORK, ENERGY AND POWER		
6.1 Work	Definition	
	Calculation of work done	
6.2 Energy	Definition	
	Types and sources of energy	
	Energy conversion	
	Law of conservation and conversion of energy	
	Calculations involving energy	
6. 3 Power	Definition	
	Calculations involving power	
7.0 THERMAL PHYSICS	Definition of matter	
7.1 Kinetic theory of matter	States of matter and their physical properties	

TOPIC	FORM 3	FORM 4
7.2 Thermal properties	Simple experiments to demonstrate thermal properties	 Calculation of heat capacity and latent heat Measurement of temperature
7.3 Heat transfer	 Modes and mechanisms of heat transfer and their applications Experiments on modes 	
	of heat transfer	
8.0 INTERNAL COMBUSTION ENGINES		Describe the operations of a four stroke engine
		Explain the role of the carburettor
		State the advantage of multiple cylinders in an engine
		Compare the operations of a diesel and petrol engine
9.0 WAVES		
9.1 Types of waves	Definition and classification of waves	
9.2 Wave properties	Experiments to demonstrate wave properties and characteristics	
9.3 Sound	Production and sound waves	
	Experiments to determine speed of sound	
9.4 Electromagnetic waves	Electromagnetic spectrum	
	Application of electromagnetic waves	
10.0 OPTICS		Application of waves: light
		Laws of reflection
		Experiments using plane mirror
		Ray diagrams
		Laws of refraction
		Experiments to demonstrate refraction
		Snell's law and application
		Experiments on dispersion of light

TOPIC	FORM 3	FORM 4
11.0 ELECTRICITY		
11.1 Electrostatics		Charging
		Interaction between charges
		Field lines
		Application of electrostatics
		Safety and hazards
11.2 Primary and secondary		Definition of terms
cells		Power sources
		Measurement of electrical entities
		Ohm's law and resistance
		Safety
11.3 Current electricity		Definition of terms
11.4 Electric circuits		Electric components
		Constructing simple circuits
11.5 Electricity in the home		Wiring of three pin plugs
		Use of two pin plugs
		Safety precautions#
12.0 MAGNETISM		
12.1 Magnetic properties		Properties and interaction
12.2 Application		
13.0 ELECTROMAGNETISM		
13.1 Magnetic effects of an		Field patterns
electric current		Hand rules
13.2 Force on current carrying		Factors
conductor in magnetic field		Hand rules
		applications
13.3 Electromagnetic induction		generator principle
		Lenz's law
		Applications
13.4 Transformers		Transformer principle
		Efficiency
		AC transmission and power loses
14.0 ELECTRONICS		Carbon resistors and colour
14.1Electronic components		coding
		Reed switch

PHYSICS TEACHERS' GUIDE FORMS 3-6

TOPIC	FORM 3	FORM 4
14.2 Logic gates		Circuit symbols
		Construction of truth tables
15.0 ATOMIC AND NUCLEAR PHYSICS		
15.1. Atomic model		Description of an atomic model
		Isotopes
15.2 Radioactivity		Definition
		Types of radioactive emission and their characteristics
		Use storage handling and impact of radioactive emission

TOPIC	FORM 5	FORM 6
General Physics	Physical Quantities and Units	
	Errors and uncertainties	
Newtonian Mechanics	Kinematics	
	■ Dynamics	
	■ Forces	
	■ Work, Energy and Power	
	Circular Motion	
	Gravitational Field	
Oscillations And	Oscillations	
Waves	■ Waves	
	Superposition	
Electricity and Mag-	Electricity	
netism	D.C. Circuits	
	Electric fields	
	Capacitance	
		Electro magnetism
		Electromagnetic Induction
		 Alternating Currents

TOPIC	FORM 5	FORM 6
Electronics		Analogue Electronics
		Digital electronics
Matter		Phases of Matter
		 Deformation of Solids
		Temperature
		 Thermal Properties of Materials
		Ideal gases
		 Non-viscous Fluid Flow
		 Transfer of Thermal Energy
Modern Physics		Charged Particles
		Quantum Physics
		 Atomic Structure
		 Radioactivity
		 Communication